Implementasi *Building Information Modelling* (BIM) 5D pada Pekerjaan Kost 2 Lantai Tipe 600

Fanji Fauzi Rajagukguk¹, Irna Henriyani², Reno Pratiwi³

Program Studi Teknik Sipil, Universitas Balikpapan

Email: fanjiaritonang @gmail.com; irna.hendriyani@uniba-bpn.ac.id; reno.pratiwi@uniba-bpn.ac.id

ABSTRAK

Kemajuan teknologi dalam dunia konstruksi telah banyak membawa manfaat, khususnya pada pomodelan bangunan, penjadwalan, estimasi biaya, perubahan volume, kelangsungan bangunan, dan manajemen bangunan. Teknologi yang banyak digunakan adalah Building informatin Modelling (BIM). Memperkirakan biaya konstruksi secara akurat sangatlah penting untuk memperoleh nilai yang efisien saat perencanaan. Dalam menghitunan anggara biaya proyek pembangunan, metode konvensional masih sering digunakan sehingga mengalami peningkatan biaya. Oleh karena itu pada penelitian ini akan menggunakan konsep Building Information Modelling (BIM) 5D yang bertujuan untuk menganalisis volume dan estimasi biaya, serta menganalisis selisih volume dan biaya antar metode BIM dan perhitungan Konsultan pada pada pekerjaan struktur pembangunan Kost 2 lantai Sepinggan Baru 1. Hasil penelitian menunjukkan bahwa pekerjaan struktur pembangunan Kost 2 lantai Sepinggan Baru 1 drngan konsep Bim 5D memiliki volume pembesian sebesar 23305,48 kg dengan biaya Rp 421.992.326,4 dan volume beton sebesar 109,05 m3 dengan biaya Rp 215.386.847,00. Selisih volume besi sebesar 17,3 % sedangkan selisih volume beton sebesar 0,84%. Hal iniberarti bahwa perhitungan menggunakan konsep Building Information Modelling (BIM) 5D dengan bantuan Software Autodesk Revit lebih rendah dibandingakan dengan perencanaan biaya yang dihasilkan konsultan. Kata Kunci: Building Information Modelling (BIM), Volume, RAB, 5D

ABSTRACT

Technological advances in the world of construction have brought many benefits, especially in building pomodeling, scheduling, cost estimation, volume changes, building continuity, and building management. A widely used technology is Building Information Modeling (BIM). Accurately estimating construction costs is essential to obtain efficient values during planning. In calculating the cost of construction projects, conventional methods are still often used, resulting in increased costs. Therefore, this research will use the concept of Building Information Modeling (BIM) 5D which aims to analyze the volume and cost estimates, as well as analyze the difference in volume and cost between the BIM method and the Consultant's calculations on the structural work of the construction of the 2-storey boarding house Sepinggan Baru 1. The results showed that the structural work of the construction of the 2-storey boarding house Sepinggan Baru 1 with the Bim 5D concept had a volume of ironwork of 23305.48 kg at a cost of Rp 421.992.326,4, and a concrete volume of 109.05 at a cost of Rp 215,386,847.00. The difference in iron volume is 17,3% while the difference in concrete volume is 0.84%. This means that the calculation using the 5D Building Information Modeling (BIM) concept with the help of Autodesk Revit Software is lower than the cost planning produced by the consultant.

Keyworas: Building Information Modeling (BIM), Volume, Cost, 5D				
Submitted:	Reviewed:	Revised	Published:	
15 Juli 2024	05 September 2024	09 November 2024	07 Februari 2025	

PENDAHULUAN

Latar Belakang

Teknologi digital seperti *Building Information Modeling* (BIM) telah muncul sebagai solusi utama untuk mengatasi permasalahan dalam dunia konstruksi. Salah satu aplikasi penting pada BIM adalah pada pekerjaan struktur. Konstruksi struktur beton bertulang merupakan bagian integral dari banyak proyek konstruksi, dan efisiensi dalam perencanaan, pelaksanaan, dan pengelolaan proyek semakin penting dalam menghadapi tekanan jadwal dan biaya Industri konstruksi menghadapi tantangan yang semakin kompleks, termasuk persyaratan ketat terhadap waktu, biaya, dan kualitas proyek. Untuk memenuhi kebutuhan ini, maka konsep BIM 5 D sangat tepat digunakan untuk mengatasi masalah tersebut, seperti pada hasil penelitian Laorent Dkk Laorent, Nugraha, and Budiman (2019) pada pembangunan gedung P1 dan P2 Universitas kristen Surabaya, terdapat perbedaan selisih perhitungan volume beton pada kolom lantai 12 sebesar 4,3% antara perhitungan metode sendiri dengan Konsep BIM menggunakan Revit

Tujuan Penelitian

- Menganalisis hasil perhitungan volume dan perkiraan biaya menggunakan konsep BIM 5D pada pekerjaan struktur bangunan kost 2 lantai tipe 600 ?
- 2. Menganalisis selisih perhitungan volume dan biaya antara konsep BIM 5D dengan perhitungan konsultan pada Pembangunan kost 2 lantai Tipe 600 ?

Rumusan Masalah

- Bagaimana hasil perhitungan volume dan perkiraan biaya menggunakan konsep BIM 5D pada pekerjaan struktur bangunan kost 2 lantai Tipe 600 ?
- 2. Bagaimana selisih perhitungan volume dan biaya antara konsep BIM 5D dengan perhitungan konsultan pada Pembangunan kost 2 lantai tipe 600 ?

METODE PENELITIAN

Subjek dan Objek Penelitian

Menurut Surokim (2016) subjek penelitian adalah sesuatu yang menjadi fokus penelitian, dapat berupa individu, objek, atau organisasi. Subjek penelitian ini merupakan fokus dari kesimpulan vang diambil dari penelitian. Didalamnya terdapat objek penelitian yang menjadi fokus penelitian penelitian. Menurut Suharsimi Arikonto (1989), subjek penelitian dapat digambarkan sebagai suatu benda, situasi atau individu tempat untuk data variabel penelitiannya tersedia. dan merupakan inti permasalahan yang diteliti. Peranan subjek penelitian sangat penting dalam suatu penelitian karena disinilah data mengenai variabel yang diamati dalam penelitian tersebut diperoleh. Adapun subjek pada penelitian ini adalah Proyek Pembangunan kost 2 (Dua) Lantai JL.Sepinggan Baru I, Kec. Balikpapan Selatan Kota Balikpapan Kalimantan Timur.

Dianti (2017) Objek penelitian adalah suatu sasaran ilmiah yang mempunyai tujuan dan kegunaan tertentu untuk mengumpulkan dan memperoleh data. adapun objek penelitian ini adalah Proyek Pembangunan kost 2 (Dua) lantai JL.Sepinggan Baru I, Kec. Balikpapan Selatan Kota Balikpapan Kalimantan Timur. objek dari penelitian ini menggunakan data atau dokumen proyek struktur pembangunan kost 2 (Dua) lantai di JL.Sepinggan Baru I, Balikpapan Selatan, Kota Balikpapan. Data atau dokumen adalah dokumen perencanaan anggaran biaya (RAB) dan *Detail Enginering Design* (DED).

Data Penelitian

Data penelitian yang digunakan adalah data Proyek Pembangunan kost 2 (Dua) Lantai JL.sepingan baru I Kec. Balikpapan Selatan, Kota Balikpapan Kalimantan Timur

- 1. Rencana Anggaran Biaya (RAB)
- 2. Detail Engineering Design (DED).

Software Pendukung

Pada penelitian ini penggunaan software Autodesk Revit menjadi pilihan utama untuk mendukung analisis estimasi biaya pada provek konstruksi. Alasan memilih software ini beragam dan penting Pertama-tama, Autodesk Revit dikenal karena kemampuannya dalam memberikan hasil yang sangat detail dalam pekerjaan desain dan perencanaan pembangunan. Kemampuan ini sangat penting untuk memastikan bahwa setiap aspek provek konstruksi tercatat secara akurat dan akurat, yang nantinya menjadi landasan penting selama proses konstruksi sebenarnya.

Tahapan Penelitian

Penelitian ini bertujuan untuk mempelajari bagaimana penerapan konsep *Building Information Modeling* (BIM) menggunakan software Autodesk Revit dalam perencanaan anggaran biaya proyek konstruksi. Metodologi yang digunakan meliputi studi literatur, pengumpulan data, dan analisis estimasi biaya biaya.

Studi Literatur

Studi literatur penelitian ini dilakukan dengan cara mencari dan mengkaji secara cermat berbagai referensi yang berkaitan dengan topik penelitian. Contoh sumber yang akan digunakan adalah buku panduan resmi perangkat lunak Autodesk Revit, yang digunakan untuk memperdalam dan memperluas pemahaman penerapannya dalam konteks perencanaan dan pengelolaan proyek konstruksi.

Pengumpulan Data

Data yang dikumpulkan meliputi estimasi biaya pekerjaan struktur dan *Detail Engineering Design* (DED) dalam perencanaan sistem struktur dengan metode konvensional. Data tersebut kemudian akan dibandingkan dengan keluaran software Autodesk Revit.

Pemodelan dan Analisis Estimasi Biaya

Penelitian ini dilaksanakan dengan pendekatan yang melibatkan data engineering, yang kemudian direkonstruksi melalui pemodelan menggunakan software Revit Student Version 2024. Proses ini mempertimbangkan Jurnal Komposit: Jurnal Ilmu-ilmu Teknik Sipil Vol. 9 No. 1 (2025) pp. 139-150 DOI: http://dx.doi.org/10.32832/komposit.v9i1.17318

berbagai aspek. Berbagai model meliputi model arsitektur dan model struktur. Setelah itu data yang diperoleh selanjutnya akan dianalisis untuk keperluan estimasi biaya pekerjaan struktur. Penelitian ini menggunakan dua metode untuk estimasi biaya. Metode yang pertama adalah konvensional, dimana estimasinya metode dilakukan dengan menghitung volume dan biaya secara manual. Metode kedua vaitu analisis estimasi biaya menggunakan perangkat lunak Autodesk Revit, volume dan biaya dihitung secara otomatis. Sistem ini bekerja dengan mengintegrasikan komponen dan family yang telah dikonfigurasi pada langkah sebelumnya. Dengan cara ini, analisis menjadi lebih efisien dan akurat karena Revit dapat secara otomatis menghitung berbagai elemen proyek tergantung pada integrasi yang dilakukan. Kedua pendekatan ini memberikan perspektif berbeda mengenai estimasi biaya dalam konteks penelitian ini

Tempat dan waktu penelitian

Lokasi penelitian ini berada di JL.Sepinggan Baru I, Kec. Balikpapan Selatan Kota Balikpapan Kalimantan Timur

Gambar 1 Peta Kalimantan dan Kota Balikpapan

Gambar 2 JL.Sepinggan Baru I Balikpapan

Periode penelitian ini dimulai pada bulan Januari sampai Agustus 2024

Bagan alir penelitian

Gambar 3 Bagan Alir

HASIL DAN PEMBAHASAN Pemodelan Struktur

1. Pondasi Tampak

Untuk membuat pondasi sesuai gambar perencanaan kontraktor, Anda dapat mengikuti langkah-langkah berikut: Klik pada toolbar "*Structure*", lalu pilih "*Foundation*", lalu klik Isolated, Pilih type *family* yang sesuai untuk pondasi tampak, kemudian letakkan pondasi sesuai dengan gambar perencanaan konsultan. Hasil akhir dapat dilihat pada Gambar 4, dan Gambar 5

Gambar 4 pemodelan Pondasi Tapak

Gambar 5 3D View Pondasi Tampak

2. Pemodelan Sloof

Untuk membuat atap miring sesuai gambar perencanaan kontraktor, pertama-tama klik pada toolbar "Structure", lalu pilih "Beam". Kemudian pilih type *family* yang sesuai untuk sloof dan tempatkan sloof

Gambar 6 pemodelan sloof

sesuai dengan gambar perencanaan konsultan. Lakukan langkah yang sama hingga semua tipe sloof telah dimasukkan dalam model bangunan. Hasil akhir dapat dilihat pada Gambar 6, dan Gambar 7

Gambar 7 3D View Sloof

3. Pemodelan Kolom

Untuk membuat kolom sesuai gambar perencanaan konsultan, pertama-tama klik pada toolbar "Struktur", lalu pilih "*Column*". Pilih type *family* jenis kolom yang sesuaidengan gambar rencana, kemudian posisikan kolom sesuai gambar perencanaan konsultan. Lakukan proses ini hingga semua tipe kolom telah ditempatkan pada model bangunan. Hasil akhirnya dapat dilihat pada Gambar 8 dan Gambar 9

Gambar 9 3D View Kolom

4. Pemodelan Balok

Untuk membuat balok sesuai gambar perencanaan kontraktorpertama-tama klik pada toolbar "Structure", lalu pilih "Beams". Pastikan tampilan gambar kerja yang digunakan adalah lantai 2 sebelum mrnrmpatkan balok. Kemudian pilih type *family* yang sesuai untuk balok dan letakkan balok sesuai gambar perencanaan konsultan .Hasil akhirnya akan terlihat seperti Gambar 10 dan Gambar 11

Gambar 10 Pemodelan Balok

78584074

Jurnal Komposit: Jurnal Ilmu-ilmu Teknik Sipil Vol. 9 No. 1 (2025) pp. 139-150 DOI: http://dx.doi.org/10.32832/komposit.v9i1.17318

5. Pemodelan Ring Balk

Sama dengan proses pembuatan balok, untuk membuat *ring balk* sesuai denah kontraktor, Anda perlu mengklik toolbar Strukture lalu klik *beam*. Sebelum memasang *Ring balk* pada gambar kerja,

Gambar 12 Pemodelan Ring Balk

pastikan tampilan yang digunakan adalah tampilan balok. Kemudian pilih *type family* untuk *ring balk* dan letakkan sesuai gambar perencanaan konsultan. Hasil akhirnya akan terlihat seperti Gambar 12 dan Gambar 13

Gambar 13 3D View Ring Balk

6. Pemodelan Plat Lantai

Untuk pemodelan plat lantai, pilih *toolbar Strukture*, lalu pilih opsi *floor*. Selanjutnya pilih *type floor* yang diinginkan dan letakkan pada titik dan level sesuai gambar rencana. Hasil akhirnya akan terlihat seperti Gambar 14 dan Gambar 15

Gambar 14 Pemodelan Plat Lantai

Gambar 15 3D View Plat Lantai

Perhitungan Volume

1. Volume pembesian Konsultan Berikut volume pembesian konsultan dapat dilihat pada Tabel 1

Та	Tabel 1 Volume Pembesian Konsultan			
No	Item	Diameter	Berat (kg)	
1	Pondasi Tampak P1	D19	2392,3	
2	Sloof S1	D16	799,6	
		D8	-	
3	Sloof S2	D16	1074,67	
		D8	-	
4	Sloof S3	D12	471,82	
		D8	-	
5	Kolom K1 LT1	D19	2021,54	
		D8	-	
6	Kolom K1 LT2	D19	1703,87	
		D8	-	
7	Kolom Praktis	D13	3960,6	
	LT1	D8	-	

8	Kolom Praktis	D13	3,338,22
	LT2	D8	_
9	Balok B1	D16	983,85
		D8	
10	Balok B2	D16	897,1
	·	D8	_
11	Balok B3	D16	1079,88
	·	D8	_
12	Balok B4	D12	841,51
		D8	
13	Ring Balk RB1	D16	864,56
		D8	
14	Ring Balk RB2	D16	276,76
		D8	
15	Ring Balk RB3	D12	2,104,73
		S8	
16	Plat Lantai 1	D10	2021,54
17	Plat Lantai 2	D10	3338,22
	Total		28170,77

Berdasarkan Tabel 1 diatas untuk volume pembesian sebesar 28170,77 kg

2. Volume Pembesian Revit

Berikut volume pembesian menggunakan Revit student version 2024 dapat dilihat pada Tabel 2

Diameter Besi			
No	Item	(mm)	Berat (kg)
	Pondasi	D19	1808 05
1	Tampak F1	D10	373,36
		D16	556,36
2	Sloof S1	D8	238,01
2	G1 6 G 2	D16	828,63
3	Sloof S2	D8	236,75
	G1 6 G2	D12	337,64
4	Sloof S3	D8	129,98
~	Kolom	D19	1740,5
Э	K1 LT1	D8	254,90
6	Klom K1	D19	1440,47
0	LT2	D8	220,41
7	Kolom Praktis	D13	1678,68
,	LT1	D8	677,76
Kolom	Kolom	D13	1353,47
8	Praktis LT2	D8	624,13
		D16	792,40
9	Balok B1	D8	189,40
10	D 1 1 D 2	D16	654,81
10	Balok B2	D8	291,64
11	D 1 1 D2	D16	520,93
11	Balok B3	D8	150,26
10	D-1-1-D4	D12	567,76
12	ваюк в4	D8	273,57
12	Ring Balk	D16	227,28
13	RB1	D8	76,94
14	Ring Balk	D16	237,15
14	RB2	D8	64,83
15	Ring Balk	D12	1186,79
15	RB3	D8	537,35
16	Plat Lantai 1	D10	2034,91
17	Plat Lantai 2	D10	2909,46

Berdasarkan Tabel 2 diatas volume pembesian menggunakan *Revit Student Version* 2024 sebesar 23305,48 kg

3. Volume Beton Konsultan

Berikut volume beton konsultan dapat dilihat pada Tabel 3

Tabel 3 Volume Beton Konsultan			
Item Pekerjaan	Volume (m3)		
Pondasi Tmpak F1	12		
Sloof S1	5,28		
Sloof S2	6		
Sloof S3	2,2		
Kolom K1 Lantai 1	8,82		
Kolom K1 Lantai 2	7,43		
Kolom Praktis Lantai 1	9,06		
Kolom Praktis Lantai 2	7,63		
Balok B1	8,75		
Balok B2	6,01		
Balok B3	3,60		
Balok B4	3,32		
Ring Balk RB1	2,63		
Ring Balk RB2	1,52		
Ring Balk RB3	9,48		
Plat Lantai 1	8,82		
Plat Lantai 2	7,43		
Total	109,98		
	Tabel 3 Volume Beton KoItem PekerjaanPondasi Tmpak F1Sloof S1Sloof S2Sloof S3Kolom K1 Lantai 1Kolom K1 Lantai 2Kolom Praktis Lantai 1Kolom Praktis Lantai 2Balok B1Balok B2Balok B3Balok B4Ring Balk RB1Ring Balk RB3Plat Lantai 1Plat Lantai 2Total		

Berdasarkan Tabel 3 diatas volume beton konsultan sebesar 109, 98m3

4. Volume Beton Revit

Berikut volome pembesian menggunakan *Revit Student Version* 2024 dapat dilihat pada Tabel 4

Tabel 4 Volume Beton Revit

No	Item Pekerjaan	Volume (m3)
1	Pondasi Tmpak F1	12
2	Sloof S1	5,28
3	Sloof S2	4,47
4	Sloof S3	2,06
5	Kolom K1 Lantai 1	8,82
6	Kolom K1 Lantai 2	7,43
7	Kolom Praktis Lantai 1	9,06
8	Kolom Praktis Lantai 2	7,63
9	Balok B1	8,25
10	Balok B2	5,66
11	Balok B3	3,18
12	Balok B4	2,26
13	Ring Balk RB1	1,55
14	Ring Balk RB2	1,45
15	Ring Balk RB3	6,68
16	Plat Lantai 1	11,41
17	Plat Lantai 2	11,86
	Total	109,05

Berdasarkan Tabel 4 diatas untuk volume beton menggunakan *Revit Student Version* 2024 sebesar 109,05 m3

Analisa Hasil

1. Analisa Perbandingan Volume Besi Hasil pebandingan volume pembesian konsultan dan *Revit student Version* 2024 dapat dilihat pada Tabel 5

Tabler 5 reibandnigan volume besi				
No	Item	Diameter Besi	Berat (Kg)	
	Pekerjaan	(mm)	Konsultan	Revit
1	Pondasi	D19	2392,30	1898,95
	Tampak F1	D10	,	373,36
2	Sloof S1	D16	799.66	556,36
	51001 51	D8	777,00	238,01
3	Sloof S2	D16	1074.67	828,63
		D8	,	236,75
4	Sloof S3	D12	471 82	337,64
•	51001 55	D8	171,02	129,98
5	Kolom K1	D19	2021 54	1740,5
	LT1	D8	2021,34	254,90
6	Kolom K1	D19	1703,87	1440,47
	LIZ	D8		220,41
7	Kolom	D13	3960.60	1678,68
	Praktis LT1	D8		677,76
0	Kolom	D13	3,338,22	1353,47
8 Prakti	Praktis LT2	D8		624,13
9	0 Palak P1	D16	983 85	792,40
	Dulok D1	D8	705,05	189,40
10	Balok B2	D16	897 1	654,81
10	Dulok D2	D8	077,1	291,64
11	Balok B3	D16	1070.88	520,93
11	Balok B3	D8	1079,88	150,26
12	Dalok D4	D12	941 51	567,76
12	Dalok D4	D8	641,51	273,57
12	Ring Balk	D16	961 56	227,28
15	RB1	D8	804,30	76,94
14	Ring Balk	D16	276.76	237,15
14	RB2	D8	270,70	64,83
15	Ring Balk	D12	2 104 72	1186,79
15	RB3	S8	2,104,75	537,35
16	Plat Lantai 1	D10	2021,54	2034,91
17	Plat Lantai 2	D10	3338,22	2909,46
	Total		28170,77	23305,48

Tabal 5 Parbandingan Valuma Basi

= Total Besi Konsultan – Total Besi dengan Revit

$$= 28170,77 - 23305,48$$
$$= 4865,29$$

Persentase Penurunan

$$= \frac{Selisih}{Total Besi Konsultan} \times 100\%$$
$$= \frac{4865,29}{18.170,77} \times 100\%$$
$$= 17,3\%$$

Gambar 16 Grafik perbandingan Besi

Bardasarkan Gambar 16 Diketahui total volume pembesian menggunakan perhitungan konsultan sebesar 28170,77 kg. Sementara itu, total volume Pembesian menggunakan metode BIM adalah 23305,48 kg, dari hasil perhitungan ini terdapat selisih sebesar 4865,29 kg atau 17,3% dimana Perhitungan menggunakan Autodesk Revit lebih rendah dibandingkan dengan perhitungan konsultan.

2. Analisa Perbandingan Volume Beton

Hasil perbandinngan volome beton konsultan dengan Revit Studen Version 2024 dapat dilihat pada Tabel 6

No	Item Pekerjaan	Volume (m3)	
140		Konsultan	Revit
1	Pondasi Tmpak F1	12	12
2	Sloof S1	5,28	5,28
3	Sloof S2	6	4,47
4	Sloof S3	2,2	2,06
5	Kolom K1 Lantai 1	8,82	8,82
6	Kolom K1 Lantai 2	7,43	7,43
7	Kolom Praktis Lantai 1	9,06	9,06
8	Kolom Praktis Lantai 2	7,63	7,63
9	Balok B1	8,75	8,25
10	Balok B2	6,01	5,66
11	Balok B3	3.60	3.18

	Total	109,98	109,05
17	Plat Lantai 2	7,43	11,86
16	Plat Lantai 1	8,82	11,41
15	Ring Balk RB3	9,48	6,68
14	Ring Balk RB2	1,52	1,45
13	Ring Balk RB1	2,63	1,55
12	Balok B4	3,32	2,26

Selisih perhitungan Beton

= Total Besi Konsultan – Total Besi dengan

ReviT

$$= 109,98 - 109,5$$

$$= 0.93$$

Persentas Penurunan

$$=$$
 $\frac{Selisih}{Total Besi Konsultan} \times 100$

$$=\frac{3.601,97}{25987,73}\times\ 100\%$$

= 0,84 %

Gambar 17 Perbandingan Volume Beton

Berdasarkan Gambar 17 Diketahui total volume beton menggunakan perhitungan konsultan sebesar 109,98 m3 Sementara itu, total volume beton menggunakan metode BIM adalah 109,05, dari hasil perhitungan ini terdapat selisih sebesar 0,93 m3 atau 0,83% dimana Perhitungan menggunakan *Autodesk Revit* lebih rendah dibandingkan dengan perhitungan konsultan. 3. Analisa Perbandingan Biaya Besi Hasil perbandingan biaya besi konsultan dan

Revit Student Version dapat dilihat pada Tabel 7

	Tabel 7Perbandingan Biaya Besi					
No	No Item Diameter Besi (mm) Jumlah Harga					
No Item	Diameter Desi (iniii)	Konsultan	Revit			
1	Pondaci Tampak El	D19	Bp 42 217 441 72	Rp. 34.384.287,7		
1	Fondasi Tampak FI	D10	кр.45.517.441,75 —	Rp. 6.760.429,52		
2	Sloof S1	D16	Bp 14 470 271 10	Rp. 10.074.010,5		
Z	51001 51	D8	Rp.14.479.371,19 —	Rp. 4.309.647,07		
2	Sloof S2	D16	D ₂ 10 459 090 22	Rp. 15.004.003,4		
3	51001 52	D8	Kp. 19.438.989,55	Rp. 4.286.832,25		
4	Sloof S2	D12	$\mathbf{D}_{\mathbf{m}} = 8542.244.74$	Rp. 6.113.647,48		
4	51001 53	D8	Rp. 8.545.244,74 —	Rp. 2.353.547,86		
5	Kalam K1 LT1	D19	D= 26 604 007 21	Rp. 31.515.233,5		
5	KOIOM KI LI I	D19	Kp.36.604.097,21	Rp. 4.615.474,3		
6	Kalam K1 LT2	D8	D = 20 852 024 70	Rp. 26082590,29		
0	Kolom KI L12	D19	Kp.30.852.024,79 —	Rp. 3.990.963,87		
7		D8	D 71 714 594 90	Rp. 30.395.858,8		
/	Kolom Prakus L11	D13	Kp./1./14.584,20 —	Rp. 12.272.200,3		
0	Kalam Dualstia LTO	D8	D = (0 445 140 54	Rp. 24.507.281,3		
8	Kolom Prakus L12	D13	Kp.60.445.149,54 —	Rp. 11.301.121,9		
0	D-1-1-D1	D16	D - 17 914 571 05	Rp. 14.347.986,8		
9	Balok B1	D8	Kp 17.814.571,95 —	Rp. 3.429.465,8		
10	Delet D2	D16	Rp 16.243.789,7	Rp. 11.856.644,7		
10	Dalok D2	D8		Rp. 5.280.725,48		
11	Delet D2	D16	$D_{rr} = 10.552.297.16$	Rp. 9.432.479,51		
11	Dalok D3	D8	Kp. 19.333.387,10	Rp. 2.720.757,82		
12	Delet D4	D12	Dr. 15 227 162 72	Rp. 10.280.430,3		
12	Balok B4	D8	Kp.15.237.162,72	Rp. 4.953.531,99		
12		D16	Dr. 15 564 597 02	Rp. 4.115.358,96		
15	King Baik KB1	D8	Kp.15.364.387,92	Rp. 1.393.152,58		
14		D16	D = 5 011 202 22	Rp. 4.294.075,05		
14	King Baik RB2	D8	Rp. 5.011.293,32	Rp. 1.173.876,81		
15		D12	D 20 110 246 11	Rp. 21.489.206,5		
15	15 Ring Balk RB3	S8	Kp.38.110.346,11 —	Rp. 9.729.796,45		
16	Plat Lantai 1	D10	Rp 36.604.097,21	Rp 36.846.115,4		
17	Plat Lantai 2	D10	Rp 60.445.149,54	Rp 52.681.592,2		
	r	Fotal	Rp 510.088132.4	Rn 421.992.326.4		

Selisih Biaya Pembesian

- = Total Biaya Pembesian Konsultan –Total Biaya Pembesian Revit
- = Rp 510.088132,4 Rp 421.992.326,4
- = Rp 88.095.806

Persentase Penurunan

 $=\frac{Selisih}{Total Besi Konsultan} \times 100\%$

= 17,3 %

Berdasarkan Gambar 18 Diketahui total biaya pembesian menggunakan perhitungan konsultan sebesar Rp 510.088132,4 Sementara itu, total biaya Pembesian menggunakan metode BIM adalah Rp 421.992.326,4dari hasil perhitungan ini terdapat selisih sebesar Rp 65.219.060,1 atau 17,3% dimana Perhitungan menggunakan Autodesk Revit lebih rendah dibandingkan dengan perhitungan konsultan.

N	Item	Jumlah Harga(Rp)	
NO	Pekerjaan	Konsultan	Revit
1	Pondasi Tmpak F1	24859499,52	24.859.499,5
2	Sloof S1	10938179,79	10.938.179,8
3	Sloof S2	12429749,76	9.260.163,57
4	Sloof S3	4557574,912	4267547,42
5	Kolom K1 Lantai 1	18271732,15	18271732,1
6	Kolom K1 Lantai 2	15392173,45	5392173,5
7	Kolom Praktis	18768922,14	8768922,1
/	Lantai 1		
Q	Kolom Praktis	15806498,44	15806498,4
0	Lantai 2		
9	Balok B1	18126718,4	17090905,9
10	Balok B2	12450466,01	11725397,3
11	Balok B3	7457849,856	6587767,37
12	Balok B4	6877794,867	4681872,41
13	Ring Balk RB1	5448373,645	3211018,69
14	Ring Balk RB2	3148869,939	3003856,19
15	Ring Balk RB3	19639004,62	13838454,7
16	Plat Lantai 1	18271732,15	23.637.240,80
17	Plat Lantai 2	15392173,45	24.569.472
	Total	227837313,1	225.910.702

Tabel 8 Perbandingan Biava Beton

Selisih Biaya Beton

= Total Biaya Beton Konsultan – Total Biaya Betom Revit

= Rp 227837313,1– Rp 225.910.702

= Rp 1.926.611,21

Persentase Penurunan

$$= \frac{Selisih}{Total Besi Konsultan} \times 100\%$$
$$= \frac{Rp \ 1.926.611.21}{Rp \ 227.837.313.1} \times 100\%$$
$$= 0.84\%$$

 Total Cost Beton

 Rp250,000,000.00
 Rp Rp227,837,313.10

 Rp200,000,000.00
 Rp Rp225,910,702.00

 Rp150,000,000.00
 Konsultan

 Rp100,000,000.00
 Revit

 Rp50,000,000.00
 Konsultan

 Rp50,000,000.00
 Konsultan

 Rp50,000,000.00
 Konsultan

 Rp50,000,000.00
 Konsultan

 Rp50,000,000.00
 Konsultan

Gambar 19 Grafik Perbandingan Biaya Beton

Berdasarkan Gambar 19 Diketahui total biaya pembesian menggunakan perhitungan konsultan sebesar Rp 227.837.313,00. Sementara itu, total biaya Pembesian menggunakan metode BIM adalah Rp 225.910.702,00 dari hasil perhitungan ini terdapat selisih sebesar Rp 1.926.611,21 atau 0,84% dimana Perhitungan menggunakan Autodesk Revit lebih rendah dibandingkan dengan perhitungan konsultan.

No	Item Pekerjaan	Jumlah Harga(Rp)	
		Konsultan	Revit
1	Pondasi Tmpak F1	68.176.941,25	66.004.216,72
2	Sloof S1	25.417.550,98	25.321.837,37
3	Sloof S2	31.888.739,09	30.377.814,45
4	Sloof S3	13.100.819,65	12.734.742,76
5	Kolom K1 Lantai 1	54.875.829,36	54.402.439,90
6	Kolom K1 Lantai 2	46.244.198,24	45.465.727,66
7	Kolom Praktis Lantai 1	90.483.506,34	61.436.981,20
8	Kolom Praktis Lantai 2	76.251.647,98	51.614.901,60
9	Balok B1	22.917.287,39	34.868.358,50
10	Balok B2	35.941.290,35	28.862.767,48
11	Balok B3	28.694.255,71	18.741.004,70
12	Balok B4	27.011.237,02	19.915.834,70
13	Ring Balk RB1	21.012.961,57	8.719.530,23
14	Ring Balk RB2	8.160.163,26	8.471.808,05
15	Ring Balk RB3	57.749.350,73	45.057.457,65
16	Plat Lantai 1	54.875.829,36	60.483.356,20
17	Plat Lantai 2	75.837.322,99	76.318.833,00
	Total	737.836.601,46	646.970.796,94

Berdasarkan Tabel 9 dapat mengetahui selisih Rencana Anggaran Biaya Selisih RAB

= Total RAB Konsultan – Total RAB Revit

= Rp 737.836.601,46– Rp 646.970.796,94

= Rp 90.865.804,52[\]

Persentase Penurunan

= 12,3 %

Gambar 20 Grafik perbandingan Rencana Anggaran Biaya

Berdasarkan Gambar 20 Diketahui total biaya pembesian menggunakan perhitungan konsultan sebesar Rp 737.836.601,46. Sementara itu, total biaya Pembesian menggunakan metode BIM adalah Rp 646.970.796,94 dari hasil perhitungan ini terdapat selisih sebesar Rp 90.865.804,52 atau 12,3 % dimana Perhitungan menggunakan Autodesk Revit lebih rendah dibandingkan dengan perhitungan konsultan. Sama halnya seperti pada hasil penelitianAnggaraini Dkk (2022) dimana peda perhitungan volume beton balok sebesr 16,68% antara perhitungan manaal dan revit dimana perhitungan revit jau lebih kecil

KESIMPULAN

Kesimpulan dari penelitian ini adalah sebagai berikut

- Hasil perhitungan volume dan perkiraan biaya menggunakan konsep BIM 5D pada pekerjaan pembesian struktur bangunan kost 2 lantai Tipe 600 untuk volume pekerjaan pembesian sebesar 23305,48 kg dengan biaya Rp 421.992.326,4 dan volume pekerjaan beton sebesar 109,05 m3 dengan biaya Rp 215.386,847
- Selisih perhitungan volume dan biaya antara 2. konsep BIM 5D dengan perhitungan konsultan pada Pembangunan kost 2 lantai tipe 600, menggunakan Sofrware Autodesk Revit menghasilkan volume pekerjaan pembesian sebesar 23305,48 kg dan perhitungan konsultan sebesar 28170,77 kg dengan selisih 4865,29 kg atau 17,1 %. untuk volume pekerjaan beton menggunakan Sofrware Autodesk Revit menghasilkan volume beton sebesar 109,05 m3 dan perhitungan konsultan sebesar 109,98 m3 dengan selisih 0,94 m3 kg atau 0,84%. Sedangkan untuk biaya pekerjaan pembesian menggunakan Sofrware Autodesk Revit menghasilkan biava sebesar Rp 421.992.326,4 dan perhitungan konsultan sebesar Rp 510.088.132,4 dengan selisih Rp 88.095.806 atau 13,85 % untuk volume pekerjaan beton menggunakan Sofrware Autodesk Revit menghasilkan biaya sebesar 225.901.702,00 dan perhitungan Rp konsultan sebesar Rp 227.837.313,00 dengan selisih Rp 1.926.661.21 atau 0,84 %

UCAPAN TERIMA KASIH

Atas segala saran, bimbingan, bantuan dan sebagainya. Penulis sangat berterima kasih kepada

- 1. Kedua orang tua saya dan saudara saya yang saya sayangi atas restu dan dukungannya selama proses penulisan penelitian ini.
- 2. Ibu Ir. Irna Hendriyani, ST., MT. Dan Ibu Ir. Reno Pratiwi, ST., MT. selaku dosen pembimbing yang selalu membimbing saya.

Jurnal Komposit: Jurnal Ilmu-ilmu Teknik Sipil Vol. 9 No. 1 (2025) pp. 139-150

DOI: http://dx.doi.org/10.32832/komposit.v9i1.17318

3. Teman–teman Teknik Sipil dan Perencanaan Angkatan 2020 dan semua pihak yang terlibat. Khususnya temanteman yang terlibat langsung membantu dalam menyelesaikan penelitian ini, yang tidak dapat disebutkan satu persatu.

DAFTAR PUSTAKA

Fitriono, F., Haza, Z. F., & Shulhan, M. A. (2023).
Analisis Perbandingan Rencana Anggaran Biaya (RAB) Metode Konvensional dengan Metode Building Information Modeling (BIM) (Studi Kasus Gedung 3 Lantai di Yogyakarta). Jurnal Ilmu Teknik Sipil Surya Beton, 7(1), 13–24.
DOI:https://doi.org/10.37729/suryabeton.y

DOI:<u>https://doi.org/10.37/29/suryabeton.v</u> 7i1.3031

- Gunawan, Maulana, and Nia Kartika. 2021. "PENERAPAN BUILDING INFORMATION MODELLING (BIM) Pendahuluan." *Jurnal Student Teknik Sipil* 3(2): 407–20. <u>https://jurnal.ummi.ac.id/index.php/JSTS/ar</u> ticle/download/1655/903/4943
- Joko, T. (2018). *Rencana Anggaran Biaya* (RAB). Badan Pengembangan Sumber Daya Manusia, Kementrian Pekerjaan Umum Dan Perumahan Rakyat. <u>https://www.slideshare.net/slideshow/2613</u> <u>b0bahanpelatihanmenyusunrabkendaripdf/2</u> <u>55840355</u>
- Laorent, D., Nugraha, P., & Budiman, J. (2019). Analisa Quantity Take-Off Dengan Menggunakan Autodesk Revit. *Dimensi Utama Teknik Sipil*, 6(1), 1–8. https://doi.org/10.9744/duts.6.1.1-8
- Barrung, J. D., & Napitupulu, K. J. H. (2022). Implementasi Building Information Modeling Direktorat Preservasi Jalan Dan Jembatan Wilayah II. *Prosiding KRTJ HPJI*, *1-12*. https://id.scribd.com/document/637211230/

141-Implementasi-Building-Information-Modeling-Direktorat-Preservasi-Jalan-dan-Jembatan-Wilayah-II-Jeffry-Daud-Barrungicha-giani-1

Putra, Z. Z. D., Danuarta, F., Pratiwi, R., & Hendriyani, I. (2024). Analisis Pekerjaan Beton Bertulang dengan Building Information Modelling (BIM) 5D pada Proyek Pembangunan Kantor dan Pos Jaga Depot Supply Point Pertamina Lubricants Tarakan. Jurnal Komposit: Jurnal Ilmu-Sipil, Teknik 8(2), 271-278. Ilmu https://doi.org/10.32832/komposit.v8i2.158 93

Pratama, R. (2021). *LKP Proyek Pembangunan Living Plaza Medan*. Universitas Medan Area.

https://repositori.uma.ac.id/jspui/bitstream/ 123456789/18479/1/198110179%20-%20Rizky%20Pratama%20-%20LKP.pdf

- Ramadhani, F. (2023). Implementasi BIM Pada Tahap Pelaksanaan Konstruksi Dengan Common Data Environment (CDE) (Studi Kasus: Proyek Gedung Universitas Nahdatul Ulama Yogyakarta). <u>https://dspace.uii.ac.id/handle/123456789/4</u> 3441
- Rokooei, S. (2015). Building Information Modeling in Project Management: Necessities, Challenges and Outcomes. *Procedia - Social and Behavioral Sciences*, 210(February), 87–95. <u>https://doi.org/10.1016/j.sbspro.2015.11.33</u> 2
- Situmorang, B. E., Arsjad, T. T., & Tjakra, J. (2018). Analisis Risiko Pelaksanaan Pembangunan Proyek Konstruksi Bangunan Gedung. *Tekno*, *16*(69), 31–36. DOI: <u>https://doi.org/10.35793/jts.v16i69.20</u> 891
- Qodiron, L., Oktarina, D., & Fadilasari, D. (2023). Penerapan Sketchup dalam Perhitungan Rencana Anggaran Biaya sebagai Pendekatan BIM pada Pembangunan Rumah Tipe 45 . Jurnal Komposit: Jurnal Ilmu-Ilmu Teknik Sipil, 7(2), 173–181. <u>https://doi.org/10.32832/komposit.v7i2.142</u> 53
- Surokim. (2016). Riset Komunikasi: Buku Pendamping Bimbingan Skripsi. Pusat Kajian Komunikasi Publik Prodi Ilmu Komunikasi FISIB-UTM & Aspikom Jawa Timur, 285. http://komunikasi.trunojoyo.ac.id/wpcontent/uploads/2016/01/BUKU-RISET-KOMUNIKASI-JADI.pdf
- Pratiwi, R., Devi, S. M., Indriani, A. M., & Sari, H. M. (2022). Optimasi Waktu Dan Biaya Dengan Metode Time Cost Trade Off (TCTO) Pada Proyek Penambahan Bangunan Pasar Rakyat. Jurnal Ilmiah Teknik Sipil Transukma, 4(2), 93-105. DOI: <u>https://doi.org/10.36277/transukma.v4i2.13</u> 4
- Waas, L., & Enjellina. (2022). Review of BIM-Based Software in Architectural Design: Graphisoft Archicad VS Autodesk Revit. Journal of Artificial Intelligence in Architecture, 1(2), 14–22.

https://doi.org/10.24002/jarina.v1i2.6016